Performance modeling of CMOS inverters using support vector machines (SVM) and adaptive sampling
نویسندگان
چکیده
منابع مشابه
Performance modeling of CMOS inverters using support vector machines (SVM) and adaptive sampling
Integrated circuit designs are verified through the use of circuit simulators before being reproduced in real silicon. In order for any circuit simulation tool to accurately predict the performance of a CMOS design, it should generate models to predict the transistor’s electrical characteristics. The circuit simulation tools have access to massive amounts of data that are not only dynamic but g...
متن کاملSTAGE-DISCHARGE MODELING USING SUPPORT VECTOR MACHINES
Establishment of rating curves are often required by the hydrologists for flow estimates in the streams, rivers etc. Measurement of discharge in a river is a time-consuming, expensive, and difficult process and the conventional approach of regression analysis of stage-discharge relation does not provide encouraging results especially during the floods. P
متن کاملAdaptive Sampling using Support Vector Machines
For these reasons, there is currently an increasing interest in the development of dynamic PRA methodologies [2, 3, 4, 5] since they can be used to address the deficiencies of the conventional methods listed above. However, while dynamic methodologies have distinct advantages over conventional methods, there is no general agreement about the need for dynamic methods due to the computational cha...
متن کاملMining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM
Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...
متن کاملPose Discriminiation and Eye Detection Using Support Vector Machines (SVM)
Most face recognition systems assume that the geometry of the image formation process is frontal. If additional poses, beyond the frontal one, are possible, then it becomes necessary to estimate the actual imaging pose. Once a face is detected and its pose is estimated one proceeds by normalizing the face images to account for geometrical and illumination changes, possibly using information abo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Microprocessors and Microsystems
سال: 2016
ISSN: 0141-9331
DOI: 10.1016/j.micpro.2016.03.007